
Outlier Detection with One-Class Classifiers from ML and KDD

Jeroen H.M. Janssens, Ildiko Flesch, and Eric O. Postma
Tilburg centre for Creative Computing

Tilburg University
Tilburg, The Netherlands

Email: jeroen@jeroenjanssens.com, ildiko.flesch@gmail.com, eric.postma@gmail.com

Abstract—The problem of outlier detection is well studied in
the fields of Machine Learning (ML) and Knowledge Discovery
in Databases (KDD). Both fields have their own methods and
evaluation procedures. In ML, Support Vector Machines and
Parzen Windows are well-known methods that can be used for
outlier detection. In KDD, the heuristic local-density estimation
methods LOF and LOCI are generally considered to be
superior outlier-detection methods. Hitherto, the performances
of these ML and KDD methods have not been compared. This
paper formalizes LOF and LOCI in the ML framework of
one-class classification and performs a comparative evaluation
of the ML and KDD outlier-detection methods on real-world
datasets. Experimental results show that LOF and SVDD are
the two best-performing methods. It is concluded that both
fields offer outlier-detection methods that are competitive in
performance and that bridging the gap between both fields
may facilitate the development of outlier-detection methods.

Keywords-one-class classification; outlier detection; local
density estimation

I. INTRODUCTION

There is a growing interest in the automatic detection
of abnormal or suspicious patterns in large data volumes
to detect terrorist activity, illegal financial transactions, or
potentially dangerous situations in industrial processes. The
interest is reflected in the development and evaluation of
outlier-detection methods [1], [2], [3], [4]. In recent years,
outlier-detection methods have been proposed in two re-
lated fields: Knowledge Discovery (in Databases) (KDD)
and Machine Learning (ML). Although both fields have
considerable overlap in their objectives and subject of study,
there appears to be some separation in the study of outlier-
detection methods. In the KDD field, the Local Outlier
Factor (LOF) method [3] and the Local Correlation Integral
(LOCI) method [4] are the two main methods for outlier
detection. Like most methods from KDD, LOF and LOCI
are targeted to process large volumes of data [5]. In the ML
field, outlier detection is generally based on data description
methods inspired by k-Nearest Neighbors (KNNDD), Parzen
Windows (PWDD), and Support Vector Machines (SVDD),
where DD stands for data description [1], [2]. These methods
originate from statistics and pattern recognition, and have a
solid theoretical foundation [6], [7].

Interestingly, within both fields the evaluation of outlier-
detection methods occurs quite isolated from the other field.

In the KDD field, LOF and LOCI are rarely compared to
ML methods such as KNNDD, PWDD, and SVDD [3], [4]
and in the ML field, LOF and LOCI are seldom mentioned.
As a case in point, in Hodge and Austin’s review of outlier
detection methods [8], LOF and LOCI are not mentioned
at all, while in a recent anomaly-detection survey [9], these
methods are compared on a conceptual level, only. The aim
of this paper is to treat outlier-detection methods from both
fields on an equal footing by framing them in a common
methodological framework and by performing a comparative
evaluation. To the best of our knowledge, this is the first time
that outlier-detection methods from the fields of KDD and
ML are evaluated and compared in a statistically valid way.1

To this end we adopt the one-class classification frame-
work [1]. The framework allows outlier-detection methods
to be evaluated using the well-known performance measure
AUC [11], and to be compared using statistically funded
comparison test such as the Friedman test [12] and the post-
hoc Nemenyi test [13].

The outlier-detection methods of which the performances
are compared are: LOF, LOCI from the field of KDD, and
KNNDD, PWDD, and SVDD from the field of ML. In this
paper, LOF and LOCI are reformulated in terms of the one-
class classification framework. The ML methods have been
proposed in terms of the one-class classification framework
by De Ridder et al. [14] and Tax [1].

The remainder of the paper is organized as follows.
Section II briefly presents the one-class classification frame-
work. In Sections III and IV we introduce the KDD and
ML outlier-detection methods, respectively, and explain how
they compute a measure of outlierness. We describe the set-
up of our experiments in Section V and their results in
Section VI. Section VII discusses the results in terms of three
observations. Finally, Section VIII concludes by stating that
the fields of KDD and ML have outlier-detection methods
that are competitive in performance and deserve treatment
on equal footing.

1Hido et al. recently compared LOF, SVDD, and several other outlier-
detection methods [10]. Unfortunately, their study is flawed because no
independent test set and proper evaluation procedure were used.

II. ONE-CLASS CLASSIFICATION FRAMEWORK

In the one-class classification framework, outlier detection
is formalized in terms of objects and labels as follows. Let
X = {x1, . . . ,xn} ,xi ∈ R

d be the object space and let Y
be the corresponding label space. A dataset D is a sequence
of object-label pairs, i.e., D = {(x1,y1), . . . , (xn,yn)} ⊆
X × Y .

In one-class classification, only example objects from a
single class, the target class, are used to train a classifier.
This makes a one-class classifier particularly useful for
outlier detection [15]. A one-class classifier f classifies a
new object xi either as belonging to the target class or to
the outlier class.

An object is classified as an outlier when it is very
‘dissimilar’ from the given target objects. To this end, one-
class classifiers generally consist of two components: a
dissimilarity measure δ and a threshold θ [1]. A new object
xi is accepted as a target object when the dissimilarity value
δ is less than or equal to the threshold θ, otherwise it is
rejected as an outlier object:

f(xi) =

{
target if δ(xi,Dtrain) ≤ θ,

outlier if δ(xi,Dtrain) > θ,
(1)

where Dtrain, the training set, is a subset of dataset D.
Each method that is presented in this paper has a different

way to compute the dissimilarity measure, which, together
with the dataset at hand, determines the optimal threshold. In
our experiments, the methods are evaluated on a complete
range of thresholds using the AUC performance measure
[11].

III. KDD OUTLIER-DETECTION METHODS

In this section we describe two popular outlier-detection
methods from the field of KDD, namely the Local Outlier
Factor method (LOF) [3] and the Local Correlation Integral
method (LOCI) [4]. Both methods are based on local
densities, meaning that they consider an object to be an
outlier when its surrounding space contains relatively few
objects (i.e., when the data density in that part of the data
space is relatively low).

We frame the KDD outlier detection methods LOF and
LOCI into the one-class classification framework [16] by
letting them compute a dissimilarity measure δ by: (i)
constructing a neighbourhood around x i, (ii) estimating the
density of the neighborhood, and (iii) comparing this density
with the neighborhood densities of the neighboring objects.
Subsections III-A and III-B explain how the three steps are
implemented in LOF and LOCI, respectively.

A. Local Outlier Factor

The first KDD method we describe is the heuristic Local
Outlier Factor method (LOF) [3]. The user needs to specify
one parameter, k, which represents the number of neighbors

constituting the neighborhood used for assessing the local
density.

In order to construct the neighborhood of an object x i,
LOF defines the neighborhood border distance d border of
xi as the Euclidean distance d from xi to its kth nearest
neighbor NN(xi, k):

dborder(xi, k) = d(xi, NN(xi, k)) .

Then, a neighborhood N (xi, k) is constructed, containing
all objects xj whose Euclidean distance to xi is not greater
than the neighborhood border distance d border:

N (xi, k) = {xj ∈ Dtrain \ {xi} | d(xi,xj) ≤ dborder(xi, k)}.

To estimate the density of the constructed neighborhood,
the reachability distance is introduced. Intuitively, this dis-
tance is defined to ensure that a minimal distance between
the two objects xi and xj is maintained, by “keeping”
object xi outside the neighborhood of object xj . The use of
the reachability distance causes a smoothing effect whose
strength depends on the parameter k. The reachability dis-
tance dreach is formally given by:

dreach(xi,xj , k)=max{dborder(xj , k), d(xj ,xi)} .

It should be noted that the reachability distance d reach is an
asymmetric measure.

The neighborhood density ρ of object x i depends on the
number of objects in the neighborhood, |N (x i, k)|, and on
their reachability distances. It is defined as:

ρ(xi, k) =
|N (xi, k)|∑

xj∈N (xi,k)

dreach(xi,xj , k)
.

Objects xj in the neighborhood that are further away from
object xi, have a smaller impact on the neighborhood density
ρ(xi, k).

In the third step, the neighborhood density ρ of object x i

is compared with those of its surrounding neighborhoods.
The comparison results in a dissimilarity measure δLOF and
requires the neighborhood densities ρ(xj , k) of the objects
xj that are inside the neighborhood of x i. The dissimilarity
measure δLOF is defined formally as:

δLOF(xi, k,Dtrain) =

∑
xj∈N (xi,k)

ρ(xj,k)
ρ(xi,k)

|N (xi, k)| .

An object which lies deep inside a cluster gets a local
outlier factor dissimilarity value of around 1 because it
has a neighborhood density equal to its neighbors. An
object which lies outside a cluster has a relatively low
neighborhood density and gets a higher local outlier factor.

B. Local Correlation Integral

The Local Correlation Integral method (LOCI) [4] was
proposed as an improvement over LOF. More specifically,
the authors state that the choice of the neighborhood size,
k, in LOF is non-trivial and may lead to erroneous outlier
detections. LOCI is claimed to be an improvement over
LOF because it considers the local density at multiple scales
or levels of granularity. LOCI achieves this by iteratively
performing the three steps, each time using a neighborhood
of increasing radius r ∈ R

+. We denote the set of relevant
radii as R.

Another difference with LOF is that LOCI defines two
neighborhoods for an object xi: (i) the extended neigh-
borhood, Next, and (ii) the local neighborhood, N loc. The
extended neighborhood of an object x i contains all objects
xj that are within radius r from xi:

Next(xi, r) = {xj ∈ Dtrain | d(xj ,xi) ≤ r} ∪ xi,

and the (smaller) local neighborhood contains all objects that
are within radius αr from object xi:

Nloc(xi, r, α) = {xj ∈ Dtrain | d(xj ,xi) ≤ αr} ∪ xi,

where α defines the ratio between the two neighborhoods
(α ∈ (0, 1]).

In LOCI, the density of the local neighborhood of
an object xi is denoted by ρ(xi, αr), and is defined as
|Nloc(xi, r, α)|.

The extended neighborhood of an object x i has a density
ρ̂(xi, r, α), which is defined as the average density of the
local neighborhoods of all objects in the extended neighbor-
hood of object xi. In formal terms:

ρ̂(xi, r, α) =

∑
xj∈Next(xi,r)

ρ(xj , αr)

|Next(xi, r)| .

The local neighborhood density of object x i is compared
to the extended neighborhood density by means of the multi-
granularity deviation factor (MDEF):

MDEF (xi, r, α) = 1 − ρ (xi, αr)
ρ̂(xi, r, α)

.

An object which lies deep inside a cluster has a local
neighborhood density equal to its neighbors and therefore
gets an MDEF value around 0. The MDEF value ap-
proaches 1 as an object lies more outside a cluster.

To determine whether an object is an outlier, LOCI
introduces the normalized MDEF:

σMDEF (xi, r, α) =
σρ̂(xi, r, α)
ρ̂(xi, r, α)

,

where σρ̂(xi, r, α) is the standard deviation of all ρ(xj , αr)
in Next(xi, r). The normalized MDEF becomes smaller
when the local neighborhoods have the same density. Intu-
itively, this causes a cluster of uniformly distributed objects

to have a tighter decision boundary than, for example, a
Gaussian distributed cluster.

We define the dissimilarity measure δ LOCI as the maxi-
mum ratio of MDEF to σMDEF of all radii r ∈ R:

δLOCI(xi, α,Dtrain) = max
r∈R

{
MDEF(xi,r,α)

σMDEF(xi,r,α)

}
.

IV. ML OUTLIER-DETECTION METHODS

In this section we briefly discuss the outlier-detection
methods from the field of Machine Learning. The methods
k-Nearest Neighbor Data Description, Parzen Windows Data
Description, and Support Vector Domain Description are
explained in Sections IV-A, IV-B, and IV-C, respectively.

A. k-Nearest Neighbor Data Description

The k-Nearest Neighbor Data Description method
(KNNDD) [14]. The dissimilarity measure computed by
KNNDD is simply the ratio between two distances. The
first is the distance between the test object xi and its kth

nearest neighbor in the training set NN(xi, k). The second
is the distance between the k th nearest training object and
its kth nearest neighbor. Formally:

δKNNDD(xi, k,Dtrain) =
d(xi, NN(xi, k))

d(NN(xi, k) , NN(NN(xi, k) , k))
.

The KNNDD method is similar to LOF and LOCI in the
sense that it locally samples the density. The main difference
with LOF and LOCI is that KNNDD is much simpler.

B. Parzen Windows Data Description

The second ML method is the Parzen Windows Data
Description (PWDD), which is based on Parzen Windows
[6]. PWDD estimates the probability density function of the
target class xi:

δPWDD(xi, h,Dtrain) =
1

Nh

N∑
j=1

K

(
xi − xj

h

)
,

where N is |Dtrain|, h is a smoothing parameter, and K
typically is a Gaussian kernel:

K(x) =
1√
2π

e−
1
2x2

.

The parameter h is optimised using a leave-one out
maximum likelihood estimation [14]. Since the dissimilarity
measure δPWDD is a probability and not a distance, the
threshold function (cf. Equation 1) for PWDD becomes:

fPWDD(xi) =

{
target if δPWDD(xi, h,Dtrain) ≥ θ,

outlier if δPWDD(xi, h,Dtrain) < θ,

such that an object with a too low probability of being a
target object is rejected as an outlier. It should be noted that
PWDD estimates the density globally, while LOF, LOCI,
and KNNDD estimate local densities.

Table I: Summary of the features of the KDD and ML
outlier-detection methods used in our experiments.

KDD ML

Feature LOF LOCI KNN PWDD SVDD

Estimate local density ✔ ✔ ✔
Estimate global density ✔
Domain based ✔

C. Support Vector Domain Description

The third method is the Support Vector Domain Descrip-
tion (SVDD) [2]. We confine ourselves to a brief description
of this kernel-based data-description method. The interested
reader is referred to [1], [2] for a full description of the
SVDD method.

SVDD is a domain-based outlier-detection method in-
spired by Support Vector Machines [17], and unlike LOF,
LOCI, and PWDD, SVDD does not estimate the data
density directly. Instead, it finds an optimal boundary around
the target class by fitting a non-linearly transformed hyper-
sphere with minimal volume using the kernel trick, such
that it encloses most of the target objects. The optimal
boundary is found using quadratic programming, where only
distant target objects are allowed to be outside the boundary
[17], [7]. The dissimilarity measure δSVDD is defined as the
distance between object xi and the target boundary. In our
experiments we employ a Gaussian kernel whose width, s,
is found as described in [2].

V. EXPERIMENTAL SET-UP

This section describes the set-up of our experiments
where we evaluate and compare the performances of LOF,
LOCI, KNNDD, PWDD, and SVDD. For clarity, we have
summarized the features of these methods in Table I. In
Section V-A we explain how we prepare the multi-class real-
world datasets that we use for our one-class experiments.
The evaluation involves the calculation of the weighted
AUC, which is described in Section V-B. The statistical
Friedman and Nemenyi tests, which we use to compare the
methods, are presented in Section V-C.

A. Datasets

In order to evaluate the methods on a wide variety of
datasets (i.e., varying in size, dimensionality, class vol-
ume overlap), we use 24 real-world multi-class datasets
from the UCI Machine Learning Repository2 [19] as
redefined as one-class classification datasets by David
Tax (http://ict.ewi.tudelft.nl/˜davidt): Ar-
rhythmia, Balance-scale, Biomed, Breast, Cancer wpbc,
Colon, Delft Pump, Diabetes, Ecoli, Glass Building, Heart,
Hepatitis, Housing, Imports, Ionosphere, Iris, Liver, Sonar,
Spectf, Survival, Vehicle, Vowel, Waveform, and Wine.

2Except the Delft Pump dataset which is taken from Ypma [18].

From each multi-class dataset containing a set of classes
C, |C| one-class datasets are constructed by relabelling one
class as the target class and the remaining |C| − 1 classes
as the outlier class, for all classes separately.

B. Evaluation

We apply the following procedure in order to evaluate
a method on a one-class dataset. An independent test set
containing 20% of the dataset is reserved. With the remain-
ing 80% a 5-fold cross-validation procedure is applied to
optimise the parameters (i.e., k = 1, 2, . . . , 50 for LOF
and KNNDD, α = 0.1, 0.2, . . . , 1.0 for LOCI, h for
PWDD, and s for SVDD). Each method is trained with
the parameter value yielding the best performance, and its
AUC performance is evaluated using the independent test
set. This procedure is repeated 5 times.

We report on the performances of the methods on an entire
multi-class dataset. To this end, the AUCs of the |C| one-
class datasets (cf. Section V-A) are averaged, where each
one-class dataset is weighted according to the prevalence,
p(ci), of the target class, ci:

AUCweighted =
∑

∀ci∈C

AUC (ci) × p (ci) ,

where p(ci) is defined as the ratio of the number of target
objects to the total number of objects in the dataset. The use
of a weighted average prevents one-class datasets containing
little target objects from dominating the results [20].

C. Comparison

Following Demšar [21], we adopt the statistical Friedman
test and the post-hoc Nemenyi test for the comparison of
multiple methods on multiple datasets. The Friedman test
[12] is used to investigate whether there is a significant
difference between the performances of the methods. The
Friedman test first ranks the methods for each dataset, where
the best performing method is assigned the rank of 1, the
second best the rank of 2, and so forth. Then it checks
whether the measured average ranks R2

j are significantly
different from the mean rank, which is 3 in our case. Iman
and Davenport proposed the FF statistic, which is less
conservative than the Friedman statistic [22]:

FF =
(N − 1)χ2

F

N (m − 1) − χ2
F

,

where N is the number of datasets (i.e., 24), m is the number
of methods (i.e., 5), and χ2

F is the Friedman statistic:

χ2
F =

12N

m (m + 1)

⎛
⎝∑

j

R2
j −

m (m + 1)2

4

⎞
⎠ .

The FF statistic is distributed according to the F -
distribution with m − 1 and (m − 1) (N − 1) degrees of
freedom.

Table II: The weighted AUC performance in percentages
obtained by the Machine Learning and Knowledge Discov-
ery outlier-detection methods on 24 real-world datasets. The
corresponding average rank for each method is reported
below.

Dataset LOF LOCI KNN PWDD SVDD

Arrhythmia 62.87 56.70 56.50 50.00 61.76
Balance-scale 94.66 91.26 93.50 94.18 95.80
Biomed 78.61 85.04 88.29 72.99 88.20
Breast 96.81 98.31 96.68 72.24 97.75
Cancer wpbc 62.57 58.55 61.37 56.56 60.59
Colon 73.47 42.08 75.53 50.00 70.18
Delft Pump 94.93 87.27 93.13 92.97 94.43
Diabetes 68.24 64.86 65.03 63.14 67.98
Ecoli 96.74 96.10 96.53 93.09 93.39
Glass Building 81.47 75.79 78.93 77.39 77.32
Heart 61.82 60.88 60.53 56.86 62.05
Hepatitis 66.53 62.05 64.72 58.73 60.89
Housing 62.86 63.75 64.56 61.66 64.24
Imports 80.49 74.24 80.24 80.09 82.11
Ionosphere 74.28 68.51 75.47 71.14 81.38
Iris 98.28 98.23 98.49 98.26 99.20
Liver 59.57 59.10 55.53 53.46 59.15
Sonar 76.89 66.71 74.22 74.45 75.77
Spectf 60.20 56.11 52.81 51.57 78.92
Survival 67.02 64.18 66.64 62.30 68.12
Vehicle 75.68 74.99 79.15 78.81 81.37
Vowel 97.89 95.22 99.49 99.56 99.28
Waveform 90.26 89.17 89.85 86.89 90.36
Wine 88.42 87.68 89.43 84.20 86.94

Average rank 2.083 3.917 2.625 4.292 2.083

When there is a significant difference, we proceed with
the post-hoc Nemenyi test [13], which checks for each pair
of methods whether there is a significant different in per-
formance. The performance of two methods is significantly
different when the difference between their average ranks is
greater or equal to the critical difference:

CD = qα

√
m (m + 1)

6N
,

where qα is the Studentised range statistic divided by
√

2. .
In our case, CD = 1.245 for α = 0.05.

VI. RESULTS

Table II presents the weighted AUC performances of each
method on the 24 real-world datasets.

The average ranks of the methods are shown at the bottom
of the table. On these 24 real-world datasets, SVDD and
LOF perform best, both with an average rank of 2.083. With
an average rank of 2.625, KNNDD performs surprisingly
well. LOCI and PWDD perform the worst, with average
ranks of 3.917 and 4.292, respectively. Interestingly, SVDD
seems to perform well on those datasets where LOF per-
forms worse and vice versa. Apparently, both methods are

5 4 3 2 1

CD

SVDD
LOF
KNNDD

LOCI
PWDD

Figure 1: Comparison of all methods against each other
with the Nemenyi test. Groups of methods that are not
significantly different (at p = 0.05) are connected.

complementary with respect to the nature of the dataset at
hand.

To see whether there is a significant difference between
these average ranks, we calculate the Friedman statistic,
χ2

F = 48.53, which results in an FF statistic of FF = 23.52.
With five methods and 24 data sets, FF is distributed
according to the F distribution with 5 − 1 = 4 and
(5 − 1) × (24 − 1) = 92 degrees of freedom. The critical
value of F (4, 92) for α = 0.05 is 2.471, so we reject the
null-hypothesis, which states that all methods have an equal
performance.

We continue with the Nemenyi test, for which the critical
distance CD, for α = 0.05, is 1.245. We identify two groups
of methods. The performances of LOCI and PWDD are
significantly worse than that of KNNDD, LOF, and SVDD.

Figure 1 graphically displays the result of the Nemenyi
test in a so-called critical difference diagram.

Groups of methods that are not significantly different
(at p = 0.05) are connected. The diagram reveals that, in
terms of performances, the methods examined fall into two
clusters. The cluster of best-performing methods consists
of SVDD, LOF, and KNNDD. The other cluster contains
PWDD and LOCI.

VII. DISCUSSION

We have evaluated five outlier-detection methods from the
fields of Machine Learning and Knowledge Discovery in
Databases on a real-world of datasets. The performances
of the methods have been statistically compared using the
Friedman and Nemenyi tests. From the obtained experimen-
tal results we make three main observations. We describe
each observation separately and provide possible reasons for
each of them below.

A. Observation 1: Local density estimates outperform
global density estimates

The first observation we make is that PWDD performs
significantly worse than LOF. This is to be expected, since
PWDD performs a global density estimate. Such an estima-
tion becomes problematic when there exist large differences
in the density. Objects in sparse clusters will be erroneously
classified as outliers.

LOF and LOCI overcome this problem by performing
an additional step. Instead of using the density estimate as a

dissimilarity measure, they locally compare the density with
the neighborhood. This produces an estimate which is both
relative and local, and enables LOF and LOCI to cope with
different densities across different subspaces. For LOF, the
local density estimate results in a better performance. For
LOCI, however, this is not the case. Possible reasons for
this are discussed in the second observation below.

B. Observation 2: LOF outperforms LOCI

The second observation we make is that LOCI is out-
performed by both LOF and KNNDD. This is unexpected
because LOCI, just like LOF, considers local densities.
Moreover, LOCI performs a multi-scale analysis of the
dataset, whereas LOF does not.

We provide two possible reasons for the relative weak
performance of LOCI. The first possible reason is that
LOF considers three consecutive neighborhoods to compute
the dissimilarity measure. LOCI, instead, considers two
neighborhoods, only. The three-fold density analysis of LOF
is more profound than the two-fold analysis of LOCI and
therefore yields a better estimation of the data density.

The second possible reason for the observed results is
that LOCI constructs a neighborhood with a given radius,
and not with a given number of objects. For small radii,
the extended neighborhood may contain one object only,
implying that there may be no deviation in the density and
that outliers might be missed at a small scale. LOF and
KNNDD, on the other hand, do not suffer from this because
both methods construct a neighborhood with a given number
of objects.

C. Observation 3: Domain-based and Density-based meth-
ods are competitive

The third observation we make is that domain-based
(SVDD) and density-based (LOF) methods are competitive
in performance.

To obtain good estimates, density-based methods require
large datasets, especially when the object space is of high
dimensionality. This implies that in case of sparsely sampled
datasets, density-based methods may fail to detect outliers
[23]. SVDD describes only the domain in the object space
(i.e., it defines a closed boundary around the target class),
and does not estimate the complete data density. As a con-
sequence, SVDD is less sensitive to an inaccurate sampling
and better able to deal with small sample sizes [1].

VIII. CONCLUSION

This paper evaluates and compares outlier-detection meth-
ods from the fields of Knowledge Discovery in Databases
(KDD) and Machine Learning (ML). The KDD methods
LOF and LOCI and the ML methods KNNDD, PWDD,
and SVDD have been framed into the one-class classifica-
tion framework, to allow for an evaluation using the AUC

performance measure, and a statistical comparison using the
Friedman and Nemenyi tests.

In our experimental comparison, we have determined
that the best performing methods are KNNDD, LOF, and
SVDD. These outlier-detection methods originate from the
fields of KDD and ML. Our findings indicate that methods
developed in both fields are competitive and deserve treat-
ment on equal footing.

Framing KDD methods in ML-based frameworks such
as the one-class classification framework, facilitates the
comparison of methods across fields and may lead to novel
methods that combine ideas of both fields. For instance, our
results suggest that it may be worthwhile to develop outlier-
detection methods that combine elements of domain-based
and local density-based methods.

We conclude that the fields of KDD and ML offer outlier-
detection methods that are competitive in performance and
that bridging the gap between both fields may facilitate the
development of outlier-detection methods. We identify two
directions for future research.

The first direction is to investigate the complementarity of
LOF and SVDD with respect to the nature of the dataset.
The relative strengths of both methods appear to depend
on the characteristics of the dataset. Therefore, investigating
which dataset characteristics determine the performances of
LOF and SVDD is useful.

The second direction is to combine the best of both fields.
For example, to extend LOF with a kernel-based domain
description.

ACKNOWLEDGMENT

This work has been carried out as part of the Poseidon
project under the responsibility of the Embedded Systems
Institute (ESI), Eindhoven, The Netherlands. This project
is partially supported by the Dutch Ministry of Economic
Affairs under the BSIK03021 program. The authors would
like to thank the anonymous reviewers and Hans Hiemstra
for their critical and constructive comments and suggestions.

REFERENCES

[1] D. Tax, “One-class classification: Concept-learning in the
absence of counter-examples,” Ph.D. dissertation, Delft Uni-
versity of Technology, Delft, The Netherlands, June 2001.

[2] D. Tax and R. Duin, “Support vector domain description,”
Pattern Recognition Letters, vol. 20, no. 11-13, pp. 1191–
1199, 1999.

[3] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “LOF: Iden-
tifying density-based local outliers,” ACM SIGMOD Record,
vol. 29, no. 2, pp. 93–104, 2000.

[4] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos,
“LOCI: Fast outlier detection using the local correlation
integral,” in Proceedings of the 19th International Conference
on Data Engineering, Bangalore, India, March 2003, pp. 315–
326.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Knowledge
discovery and data mining: Towards a unifying framework,”
Knowledge discovery and data mining, pp. 82–88, 1996.

[6] E. Parzen, “On estimation of a probability density function
and mode,” The Annals of Mathematical Statistics, pp. 1065–
1076, 1962.

[7] B. Scholkopf and A. Smola, Learning with kernels. MIT
press Cambridge, MA, USA, 2002.

[8] V. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial Intelligence Review, vol. 22, no. 2,
pp. 85–126, October 2004.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1–58,
2009.

[10] S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and
T. Kanamori, “Inlier-based outlier detection via direct density
ratio estimation,” in Eighth IEEE International Conference on
Data Mining, 2008. ICDM’08, 2008, pp. 223–232.

[11] A. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,” Pattern
Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[12] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, pp. 675–701, 1937.

[13] P. Nemenyi, “Distribution-free multiple comparisons,” Ph.D.
dissertation, Princeton, 1963.

[14] D. de Ridder, D. Tax, and R. Duin, “An experimental com-
parison of one-class classification methods,” in Proceedings
of the Fourth Annual Conference of the Advanced School for
Computing and Imaging. Delft, The Netherlands: ASCI,
June 1998, pp. 213–218.

[15] N. Japkowicz, “Concept-learning in the absence of counter-
examples: An autoassociation-based approach to classifica-
tion,” Ph.D. dissertation, Rutgers University, New Brunswick,
NJ, October 1999.

[16] J. Janssens and E. Postma, “One-class classification with
LOF and LOCI: An empirical comparison,” in Proceedings
of the 18th Annual Belgian-Dutch Conference on Machine
Learning, Tilburg, The Netherlands, May 2009, pp. 56–64.

[17] V. Vapnik, The nature of statistical learning theory. Springer-
Verlag, NY, USA, 1995.

[18] A. Ypma, “Learning methods for machine vibration analysis
and health monitoring,” Ph.D. dissertation, Delft University,
2001.

[19] A. Asuncion and D. Newman. (2007) UCI machine
learning repository. [Online]. Available: http://www.ics.uci.
edu/∼mlearn/MLRepository.html

[20] K. Hempstalk and E. Frank, “Discriminating against new
classes: One-class versus multi-class classification,” in Proc
21st Australasian Joint Conference on Artificial Intelligence,
ser. Auckland, New Zealand. Springer, 2008.

[21] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” The Journal of Machine Learning Research, vol. 7,
pp. 1–30, 2006.

[22] R. Iman and J. Davenport, “Approximations of the critical
region of the Friedman statistic,” in Annual meeting of the
American Statistical Association, vol. 12, 1979.

[23] C. Aggarwal and P. Yu, “Outlier detection for high dimen-
sional data,” ACM SIGMOD Record, vol. 30, no. 2, pp. 37–46,
2001.

